MATHS BITE: Kaprekar Numbers

Consider an n-digit number k. Square it, and then add the right n digits to the left n or n-1 digits (by convention, the second part may start with the digit 0, but must be nonzero). If the result is k then it is called a Kaprekar number. They are named after D. R. Kaprekar, a recreational mathematician from India.

We can extend the definition to any base b:

Let  X  be a non-negative integer and  n a positive integer.  X  is an n-Kaprekar number for base  b  if there exist non-negative integer A, and positive integer B  satisfying:

X2 = Abn + B, where 0 < B < bn
X = A + B

-Wikipedia

Examples in Base 10

• 297: 2972 = 88209, which can be split into 88 and 209, and 88 + 209 = 297.

• 999: 9992 = 998001, which can be split into 998 and 001, and 998 + 001 = 999.
• In particular, 9, 99, 999… are all Kaprekar numbers.
• More generally, for any base b, there exist infinitely many Kaprekar numbers, including all numbers of the form bn − 1.
• 100: 100 is NOT a Kaprekar number as, although 1002 = 10000 and 100 + 00 = 100, the second part here is zero.

M x

(P.S. Another post on Kaprekar is coming soon!)