A heptadecagon (or a 17-gon) is a seventeen sided polygon.

In 1796, Gauss proved, at the age of 19 (let that sink in…) that the heptadecagon is constructible with a compass and a straightedge, such as a ruler. His proof of the constructibility of an n-gon relies on two things:

• the fact that “constructibility is equivalent to expressibility of the trigonometric functions of the common angle in terms of arithmetic operations and square root extractions“;
• the odd prime factors of n are distinct Fermat primes.

Constructing the regular heptadecagon involves finding the expression for the cosine of   in terms of square roots, which Gauss gave in his book Disquistiones Arithmeticae:

An explicit construction was given by Herbert Willian Richmond in 1893.

M x

## MATHS BITE: Ford Circles

A ford circle is a circle with centre , and radius  where p and q are coprime integers.

Notice that each Ford Circle is tangent to to the horizontal axis and any two Ford circles are either tangent or disjoint. The latter statement can be proven by finding the squared distance d^2 between the centres of the circles with (p,q) and (p’,q’) as the pairs of coprime integers.

Let s be the sum of the radii:

Then

However, we have that  and so , thus the distance between circles is greater or equal to the sum of the radii of the circles. There is equality iff

In this case, the circles are tangent to one another.

#### Total area of Ford Circles

(taken from Wikipedia)

As no two ford circles intersect, it follows immediately that the total area of the Ford circles:

is less than 1.

From the definition, the area is

Simplifying this expression gives us

noting that the last equality is given by considering the Dirichlet generating function for Euler’s totient function φ(q).

Given that ζ(4) = π^4/90, we get

M x

## MATHS BITE: Shoelace Theorem

The Shoelace theorem is a useful formula for finding the area of a polygon when we know the coordinates of its vertices. The formula was described by Meister in 1769, and then by Gauss in 1795.

### Formula

Let’s suppose that a polygon P has vertices (a1, b1), (a2, b2), …, (an, bn), in clockwise order. Then the area of P is given by

$$\dfrac{1}{2} |(a_1b_2 + a_2b_3 + \cdots + a_nb_1) - (b_1a_2 + b_2a_3 + \cdots + b_na_1)|$$

The name of this theorem comes from the fact that if you were to list the coordinates in a column and mark the pairs to be multiplied, then the image looks like laced-up shoes.

### Proof

(Note: this proof is taken from artofproblemsolving.)

Let $\Omega$ be the set of points that belong to the polygon. Then

$$A=\int_{\Omega}\alpha,$$

where $\alpha=dx\wedge dy$.

Note that the volume form $\alpha$ is an exact form since $d\omega=\alpha$, where

$$\omega=\frac{x\,dy}{2}-\frac{y\,dx}{2}.\label{omega}$$

Substitute this in to give us

$$\int_{\Omega}\alpha=\int_{\Omega}d\omega.$$

and then use Stokes’ theorem (a key theorem in vector calculus) to obtain

$$\int_{\Omega}d\omega=\int_{\partial\Omega}\omega.$$

where

$\partial \Omega=\bigcup A(i)$

and $A(i)$ is the line segment from $(x_i,y_i)$ to $(x_{i+1},y_{i+1})$, i.e.  is the boundary of the polygon.

Next we substitute for $\omega$:

$$\sum_{i=1}^n\int_{A(i)}\omega=\frac{1}{2}\sum_{i=1}^n\int_{A(i)}{x\,dy}-{y\,dx}.$$

Parameterising this expression gives us

$$\frac{1}{2}\sum_{i=1}^n\int_0^1{(x_i+(x_{i+1}-x_i)t)(y_{i+1}-y_i)}-{(y_i+(y_{i+1}-y_i)t)(x_{i+1}-x_i)\,dt}.$$

Then, by integrating this we obtain

$$\frac{1}{2}\sum_{i=1}^n\frac{1}{2}[(x_i+x_{i+1})(y_{i+1}-y_i)- (y_{i}+y_{i+1})(x_{i+1}-x_i)].$$

This then yields, after further manipulation, the shoelace formula:

$$\frac{1}{2}\sum_{i=1}^n(x_iy_{i+1}-x_{i+1}y_i).$$

M x

## Maths Bite: Impossible cube

The impossible cube was invented by M.C. Escher for his 1958 print Belvedere. It is based on the Necker cube, and seems to defy the rules of geometry; on the surface resembles a perspective drawing of a 3D cube, however its features are drawn inconsistently from the way they would be in an actual cube.

The impossible cube draws upon the ambiguity present in a Necker cube illustration, in which a cube is drawn with its edges as line segments, and can be interpreted as being in either of two different three-dimensional orientations. – Wikipedia

How would this cube look like in real life? The below video attempts to demonstrate that.

M x

## MATHS BITE: The Kolakoski Sequence

The Kolakoski sequence is an infinite sequence of symbols {1,2} that is its own “run-length encoding“. It is named after mathematician Willian Kolakoski who described it in 1965, but further research shows that it was first discussed by Rufus Oldenburger in 1939.

This self-describing sequence consists of blocks of single and double 1s and 2s. Each block contains digits that are different from the digit in the preceding block.

To construct the sequence, start with 1. This means that the next block is of length 1. So we require that the next block is 2, giving the sequence 1, 2. Continuing this infinitely gives us the Kolakoski sequence: 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, etc.

M x

## MATHS BITE: Apéry’s Constant

Apéry’s constant is defined as the number

where ζ is the Riemann Zeta Function.

This constant is named after the French mathematician Roger Apéry who proved that it was irrational in 1978. However it is still unknown whether or not it is transcendental.

## History

In the 18th century, Leonhard Euler proved that in fact it did – to π^2/6. However, the limit of the following sum remained unknown:

Although mathematicians made some progress, including Euler who calculated the first 16 decimal digits of the sum, it was not known whether the number was rational or irrational, until Apéry.

Furthermore, it is currently not known specifically whether any other particular ζ(n), for n odd, is irrational. “The best we’ve got is from Wadim Zudilin, in 2001, who showed that at least one of ζ(5), ζ(7), ζ(9), ζ(11) must be irrational, and Tanguy Rivoal, in 2000, who showed that infinitely many of the ζ(2k+1) must be irrational.”

M x

## MATHS BITE: Dini’s Surface

Dini’s surface, named after Ulisse Dini, is a surface with constant negative curvature that can be created by twisting a pseudosphere (see picture below).

Dini’s surface is given by the following parametric equations:

Dini’s surface is pictured in the upper right-hand corner of a book by Alfred Gray (1997), as well as on the cover of volume 2, number 3 of La Gaceta de la Real Sociedad Matemática Española (1999).

M x