12th Polymath Project

The Polymath Project is a collaboration among mathematicians to solve important problem in mathematics by providing a platform for mathematicians to communicate with each other on how to find the best route to the solution.

It began in January 2009 when Tim Gowers posted a problem on his blog and asked readers to reply with partial ideas or answers. This experiment resulted in a new answer to a difficult problem, proving the benefits of collaboration.

Previous Polymath projects that have successfully led to proofs incude the density version of the Hales-Jewett theorem and the Erdös discrepancy problem, as well as famously reducing the bound on the smallest gaps between primes.

Recently the 12th Polymath Project has started; Timothy Chow of MIT has proposed a new Polymath Project – resolve Rota’s basis conjecture.

What is the Rota’s Basis Conjecture?

The Rota’s Basis Conjecture states:

“If B1, B2,…., Bn are n bases of an n-dimensional vector space V (not necessarily distinct or disjoint), then there exists an n x n grid of vectors (vij) such that:

  1. the n vectors in row i are the members of the ith basis Bi (in some order), and
  2. in each column of the matrix, the n vectors in that column form a basis of V.”

Although easy to state, this conjecture has revealed itself hard to prove (like Fermat’s Last Theorem)!

M x

Intrinsic Geometry

Today I wanted to discuss the geometry of curves and surfaces.

Curves, Curvature and Normals

First let us consider a curve r(s) which is parameterised by s, the arc length.

Now, t(s) = Screen Shot 2017-02-14 at 8.05.47 AM.png is a unit tangent vector and so t2 = 1, thus t.t = 1. If we differentiate this, we get that t.t‘ = 0, which specifies a direction normal to the curve, provided t‘ is not equal to zero. This is because if the dot product of two vectors is zero, then those two vectors are perpendicular to each other.

Let us define t’ = Kwhere the unit vector n(s) is called the principal normal and K(s) is called the curvature. Note that we can always make K positive by choosing an appropriate direction for n.

Another interesting quantity is the radius of curvature, a, which is given by

a = 1/curvature

Now that we have n and t we can define a new vector x n, which is orthonormal to both t and n. This is called the binormal. Using this, we can then examine the torsion of the curve, which is given by

T(s) = –b’.n

Image result for binormal tangent

Intrinsic Geometry

As the plane is rotated about n we can find a range

Screen Shot 2017-02-14 at 8.16.01 AM.pngwhereScreen Shot 2017-02-14 at 8.16.08 AM.png and Screen Shot 2017-02-14 at 8.16.14 AM.png are the principal curvatures. Then

Screen Shot 2017-02-14 at 8.17.34 AM.png

is called the Gaussian curvature.

Gauss’ Theorema Egregium (which literally translates to ‘Remarkable Theorem’!) says that K is intrinsic to the surface. This means that it can be expressed in terms of lengths, angles, etc. which are measured entirely on the surface!

For example, consider a geodesic triangle on a surface S.

Screen Shot 2017-02-14 at 8.20.37 AM.png

Let θ1, θ2, θ3 be the interior angles. Then the Gauss-Bonnet theorem tells us that

Screen Shot 2017-02-14 at 8.22.10 AM.png

which generalises the angle sum of a triangle to curved space.

Let us check this when S is a sphere of radius a, for which the geodesics are great circles. We can see that Screen Shot 2017-02-14 at 8.16.08 AM.png=Screen Shot 2017-02-14 at 8.16.14 AM.png= 1/a, and so K = 1/a2, a constant. As shown below, we have a family of geodesic triangles D with θ1 = α, θ2 = θ3 = π/2.

screen-shot-2017-02-14-at-8-26-15-am

Since K is constant over S,

Screen Shot 2017-02-14 at 8.27.09 AM.png

Then θ1 + θ2 + θ3 = π + α, agreeing with the prediction of the theorem.

M x